Search results for "Dispersive shocks"
showing 4 items of 4 documents
Complex singularities in KdV solutions
2016
In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.
Complex singularities and PDEs
2015
In this paper we give a review on the computational methods used to capture and characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the classical singularity tracking method and give an example of application using the Burgers equation as a case study. This method is based on the analysis of the Fourier spectrum of the solution and it allows to determine and characterize the complex singularity closest to the real domain. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Padé approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the s…
On critical behaviour in generalized Kadomtsev-Petviashvili equations
2016
International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…
Etude numérique d'équations aux dérivées partielles non linéaires et dispersives
2011
Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…